• The angular motion is given by $$\varphi - \varphi_0 = (1+k)v + \left(\frac{f_{4\varphi}}{c^4} + \frac{f_{6\varphi}}{c^6}\right)\sin 2v + \left(\frac{g_{4\varphi}}{c^4} + \frac{g_{6\varphi}}{c^6}\right)\sin 3v + \frac{i_{6\varphi}}{c^6}\sin 4v + \frac{h_{6\varphi}}{c^6}\sin 5v,$$ where $$v = 2 \arctan \left[\left(\frac{1 + e_{\varphi}}{1 - e_{\varphi}} \right)^{1/2} \tan \frac{u}{2} \right]$$ - $\star v$ is the true anomaly - \star k is the measure of the advance of the periastron & e_{φ} is the 'angular eccentricity' - * $f_{4\varphi}$, $f_{6\varphi}$, $g_{4\varphi}$, $g_{6\varphi}$, $i_{6\varphi}$, and $h_{6\varphi}$ are 2PN & 3PN order orbital functions expressible in terms of E, L, m_1 and m_2